

«ПЕЗТ» ОА RИЦАЕИНА ТРО

Акционерное общество «Высокотехнологический научно- исследовательский институт неорганических материалов имени академика А.А. Бочвара» (АО «ВНИИНМ»)

ул. Рогова, д. 5а, Москва, 123098 Телефон: (499) 190-89-99, факс: (499) 196-41-68 E-mail: vniinm@rosatom.ru ОКПО 07625329, ОГРН 5087746697198 ИНН 7734598490, КПП 775050001

17 03. 2022	№ <u>26-601/1910</u>
На №	ОТ

Об отзыве на автореферат

УлГУ Отдел подготовки кадров высшей квалификации Учёному секретарю Вострецовой Л.Н.

ул. Толстого, д. 42, г. Ульяновск, 432970

Заказное

ОТЗЫВ

на автореферат диссертации Обухова Александра Валерьевича «Влияние реакторного облучения и послерадиационного отжига на элементный состав и кристаллическую структуру вторых фаз в циркониевых сплавах Э110 и Э635», представленной на соискание ученой степени кандидата технических наук по специальности 1.3.8 – «Физика конденсированного состояния»

изменения элементного Изучение закономерностей кристаллической решётки вторых фаз в циркониевых сплавах под действием реакторного облучения и послерадиационного отжига необходимо для понимания сложных структурно-фазовых процессов, происходящих в циркониевых изделиях атомной техники под действием реакторного облучения и при после реакторных обращениях с ними. Для совершенствования созданных сплавов циркония (Э110, Э635, др.) путём модернизации и оптимизации их составов для улучшения их радиационно-термических воздействиях характеристик при выявленные в диссертационной работе Обухова Александра Валерьевича закономерности, поэтому актуальность его работы не вызывает сомнений.

Как видно из текста автореферата, постановка задач и цели исследований проводились диссертантом с учётом анализа имеющихся литературных данных и наличия неизученных аспектов в рассматриваемой области знаний и хорошо обоснованы.

Успешное выполнение поставленных в работе задач, предусматривающее наличие глубоких знаний в области структурных методов исследований материалов позволило диссертанту выделить среди полученных результатов исследований важные положения, имеющие научную новизну. В своей работе соискатель использовал современные методы исследования тонкой структуры облучённых циркониевых сплавов, в том числе на экстракционных лаково-

углеродных репликах, подготовка которых является сложным процессом. Диссертантом выявлены закономерности изменения элементного состава выделений вторых фаз, их размеров и структурно-фазового состояния от дозы облучения при низких (40 – 70)°С и рабочих (290 – 340)°С температурах для условий реакторов типа ВВЭР-1000. Изучены особенности частичного возврата элементного состава частиц вторых фаз к исходным значениям при воздействии длительного послерадиационного отжига и установлены параметры появления и эволюции мелкодисперсных радиационно-индуцированных выделений. Все выявленные соискателем явления и закономерности имеют важное практическое значение для прогнозирования поведения циркониевых изделий в условиях эксплуатации, а также в условиях, моделирующих режимы сухого хранения ТВС. Практическая ценность работы подтверждена актами о внедрении результатов, размещением их в отраслевой базе данных, разработанной в НИЯУ МИФИ.

Основные результаты работы обсуждены научной общественностью на Российских и Международных научных форумах, опубликованы в 18 работах, 4 статьи из которых входят в перечень журналов, рекомендованных ВАК РФ, 8 статей – в базу данных Scopus.

Обоснованность и достоверность полученных автором результатов и выводов диссертационной работы не вызывают сомнений, они вытекают из современных представлений о процессах, происходящих в сплавах при радиационном и термическом воздействии.

Представленная работа вносит существенный вклад в понимание процессов перераспределения элементов между частицами вторых фаз и твёрдым раствором, происходящих в сплавах на основе циркония при радиационном и термическом воздействии в условиях реакторного облучения и при параметрах, моделирующих режимы сухого хранения тепловыделяющих сборок.

В целом, представленные в автореферате данные, язык и стиль изложения производят хорошее впечатление цельности и законченности научного труда, который полезен широкому кругу специалистов, занимающихся исследованиями материалов ЯЭУ.

В качестве замечаний (рекомендаций для дальнейших исследований) следовало бы отметить необходимость более детального исследования:

закономерностей и механизмов роста и аннигиляции, ранее образовавшихся радиационно-индуцированных выделений, формирующих решетки дефектов, в процессе последующих внереакторных отжигов;

процессов образования и эволюции гидридов циркония при радиационном и температурном воздействии.

Сделанные замечания (рекомендации) не влияют на общую, положительную оценку диссертационной работы.

Диссертационная работа отвечает требованиям, предъявляемым к кандидатским диссертациям согласно п. 9 Положения о порядке присуждении ученых степеней, утверждённого постановлением Правительства Российской

Федерации от 24.09.2013 № 842, а её автор Обухов Александр Валерьевич заслуживает присуждения учёной степени кандидата технических наук по специальности 1.3.8 – «Физика конденсированного состояния».

Доктор физ.-мат. наук, профессор главный научный сотрудник AO «ВНИИНМ» « 15 » марта 2022 г. E-mail: VMChernov@bochvar.ru www.bochvar.ru

Чернов В.М.

Подпись доктора физ.-мат. наук, профессора главного научного сотрудника AO «ВНИИНМ» Чернова В.М. заверяю.

Ученый секретарь АО «ВНИИНМ» канд. экон. наук Тел.(499) 190-8999, доб. 82-59 Email: MikVaPozdeev@bochvar.ru

Поздеев М.В.

Чернов Вячеслав Михайлович, доктор физико-математических наук (с 1987 г.) по научной специальности «физика твердого тела».

Чернов Вячеслав Михайлович (499) 190-89-99 доб. 82-62

ОТЗЫВ

на автореферат диссертации Обухова Александра Валерьевича «Влияние реакторного облучения и послерадиационного отжига на элементный состав и кристаллическую структуру вторых фаз в циркониевых сплавах Э110 и Э635», представленной на соискание ученой степени кандидата технических наук по специальности 1.3.8 – «Физика конденсированного состояния»

Диссертационная работа А.В. Обухова посвящена актуальному направлению научно-технологического развития атомной энергетики, связанному с повышением эксплуатационных свойств конструкционных реакторных материалов на основе сплавов циркония. Большое влияние на коррозионные и механические свойства изделий из циркониевых сплавов оказывают выделения вторых фаз в кристаллической матрице. При этом важны структура, элементный состав, размеры и другие параметры морфологии выделений. Радиационное и термическое воздействие на сплавы циркония может вносить существенный вклад в изменение характеристик выделений путём перераспределения элементов между частицами вторых фаз и твёрдым раствором легирующих элементов в цирконии. Интенсивность и результат этого воздействия зависят от исходного состава, размера частиц и легирующего состава сплава. Тема диссертации А.В. Обухова актуальна для разработки новых и модификации используемых в настоящее время циркониевых сплавов в качестве материала изделий активных зон водоохлаждаемых атомных реакторов.

Задачи и цели исследований сформулированы Обуховым А.В. с учётом анализа отечественной и иностранной литературы. Они направлены на решение неизученных проблем в области исследований вторых фаз в облучённых сплавах циркония.

Судя по автореферату диссертации, поставленные цели в работе достигнуты. Диссертант продемонстрировал хорошее понимание процессов, происходящих в циркониевых сплавах при радиационном и термическом воздействии, представил убедительные экспериментально полученные доказательства изменений, происходящих в исследованных фазах. Опыт и знания в области электронной микроскопии и кристаллографии облучённых материалов позволил диссертанту выделить важные положения с признаками научной новизны. Он продемонстрировал существенные различия стойкости вторых фаз, имеющих разную кристаллическую решётку, к изменениям при радиационном и термическом воздействии. Так, например, в частицах β-Nb происходит изменение размеров и элементного состава при сохранении ОЦК решётки, выделения же фазы Лавеса претерпевают трансформацию с изменением типа кристаллической решётки от ГПУ в ОЦК, а при низкотемпературном облучении частицы фазы Лавеса, в отличие от β-Nb, становятся аморфными.

Важное практическое значение для прогнозирования поведения изделий из сплавов циркония имеют полученные выводы об одинаковых закономерностях изменения характеристик вторых фаз при облучении в исследовательских реакторах модельных образцов и изделий из циркониевых сплавов в условиях энергетических реакторов ВВЭР. Это является хорошим обоснованием для проведения экспериментов с ускоренным облучением образцов. Практическая ценность работы доказана также актами о внедрении результатов, изложенных в диссертационной работе.

Публикационная активность Обухова А.В. по теме диссертации довольно высока – основные результаты опубликованы в 18 работах, 4 статьи из которых входят в перечень журналов, рекомендованных ВАК РФ, 8 статей – в базу данных Scopus. Результаты, представленные в работе, неоднократно докладывались на российских и международных конференциях, хорошо известны специалистам.

Обоснованность и достоверность полученных автором результатов и выводов лиссертационной работы не вызывают сомнений. Они основаны на анализе большого массива экспериментальных данных, полученных с использованием современного оборудования и необходимых методик исследования тонкой структуры облучённых циркониевых материалов. Трактовки механизмов процессов, происходящих с фазами в циркониевых сплавах при радиационном и термическом воздействии, соответствуют представлениям, изложенным в научной литературе. Диссертант современным (с использованием разработанного им единый подход использовал экспериментального способа) к оценке величины повреждающей дозы для изделий зон реакторов типа ВВЭР и модельных образцов, облучённых в исследовательских реакторах.

Представленная Обуховым А.В. работа вносит существенный вклад в понимание природы процессов, происходящих с выделениями вторых фаз при радиационном и термическом воздействии, развивает представления о закономерностях их изменения в условиях реакторного облучения и при последующем обращении, например, при сухом хранении тепловыделяющих сборок.

В целом, судя по автореферату, диссертационная работа Обухова является законченным научным трудом, представляющим интерес как для широкого использования в расчётном моделировании процессов в реальных изделиях при эксплуатации в активных зонах ЯЭУ и при последующем обращении с ними, так и в учебном процессе для студентов соответствующих специальностей. Диссертационная работа в целом хорошо структурирована и ясно изложена.

К автореферату диссертации имеются следующие замечания:

- не приведены сведения о верификации пересчета повреждающий дозы, исходя из выгорания и флюенса нейтронов;
- не обсуждается возможное влияние примесного состава сплава на поведение выделений вторых фаз;
- при рассмотрении закономерностей влияния температуры на состав и структуру некоторых вторых фаз представлены результаты только для двух температурных областей; по приведенным данным нельзя построить зависимости в промежуточном диапазоне температур;
- при описании эволюции Т-фазы не указана температура, при которой проводилось облучение;
- не описано влияние длительного послереакторного отжига на поведение выделений Т-фазы и радиационно-индуцированной мелкодисперсной фазы.

Тем не менее, указанные замечание носят рекомендательный характер, не умаляют полученные соискателем результаты и не влияют на положительную оценку диссертационной работы.

В целом, диссертационная работа Обухова А.В. выполнена на высоком профессиональном уровне. Основные результаты являются новыми, имеют научную и практическую ценность.

Как следует из содержания автореферата, диссертационная работа отвечает требованиям, предъявляемым к кандидатским диссертациям согласно п.9 «Положения о порядке присуждении ученых степеней», утверждённого постановлением Правительства Российской Федерации от 24.09.2013 г., №842, а её автор Обухов Александр Валерьевич заслуживает присуждения учёной степени кандидата технических наук по специальности 1.3.8 – «Физика конденсированного состояния».

UN Chereny 111.03.22

Заместитель директора отделения — начальник отдела АО «ГНЦ РФ ТРИНИТИ», кандидат физико-математических наук

И.А. Евдокимов

Подпись И.А. Евдокимова подтверждаю.

Ученый секретарь АО «ГНЦ РФ ТРИНИТИ»

кандидат физико-математических гаук

А.А. Ежов

Евдокимов Игорь Анатольевич кандидат физико-математических наук по специальности 01.04.14 - Теплофизика и теоретическая теплотехника

Адрес: Россия, 108840, г. Москва, г. Троицк, ул. Пушковых, вл. 12