THE EXAM QUESTIONS on the discipline "Biology"

A. Suggested final test questions of the discipline "Biology"

- 1. Biology as a science of patterns and mechanisms of functioning and development of organisms.
- 2. Defining the essence of life. The fundamental properties of living. . Evolutionary-based levels of organization of life.
- 3. The main stages of development of the cell theory. Cell theory of Schleiden-Schwann, Vi. Modern cell theory.
- 4. Structure and function of cell membrane organelles.
- 5. Structure and function of nonmembrane cell organelles.
- 6. Structural and functional organization of the interphase nucleus.
- 7. Comparative characteristics of pro- and eukaryotic cells. Distinctive features of the cells of plants and animals.
- 8. The life cycle of the cell. Characteristics of the interphase.
- 9. Mitosis: phase and biological significance.
- 10. Morphofunctional characteristic of the hereditary apparatus of cells.
- 11. Reproduction the universal property of living. The evolution of reproduction. Biological aspects of sexual dimorphism.
- 12. Methods of asexual and sexual reproduction.
- 13. Cytological and cytogenetic characterization of meiosis.
- 14. Subject, objectives, methods and stages of development of genetics.
- 15. The main provisions of the chromosome theory of heredity. Linked inheritance.
- 16. The gene as a functional unit of heredity. Classification, properties and localizations of gene.
- 17. Mendel's laws and cytological bases.
- 18. Sex linkage. Genetics of sex.
- 19. The regulation of the activity of genes in prokaryotes.
- 20. Modification variability, its adaptive nature, meaning in ontogeny and evolution. The concept of normal reaction.
- 21. Mechanisms combinative variability. The value of combinative variability in ensuring the genotypic diversity of people.
- 22. Mutational variability. Classification of mutations. The concept of genetic mutations. Genetic disease.
- 23. Chromosomal mutations (aberration). The concept of chromosomal diseases.
- 24. Genomic mutations. Euploidiya and aneuplodiya.
- 25. The concept of ontogenesis. Periodization of ontogenesis. The life cycles of organisms as a reflection of their evolution.
- 26. Cleavage. Types of cleavage. Types blastula.
- 27. Gastrulation. Methods of gastrulation.
- 28. Primary and final organogenesis.
- 29. Embryonic membranes (provisionals organs): structure and physiological significance.
- 30. Differentiation in development. Stages and differentiation factors.
- 31. Embryonic induction.
- 32. The critical periods of development. Teratogenic agents factors.
- 33. General characteristics and periodization of postnatal ontogenesis of the person.
- 34. The regeneration of organs and tissues as a process of development. The physiological and reparative regeneration. Methods of reparative regeneration.
- 35. Pre-Darwinian evolutionary ideas infancy. The evolutionary concept of J.B. Lamark.
- 36. Darwin's contribution to the development of evolutionary theory. The main provisions of the theory of evolution.
- 37. The modern synthetic theory of evolution. Population the unit of evolution.
- 38. Species qualitative stage of evolution. Criteria for the species. Factors evolution.

- 39. The main directions of evolution (biological progress and regression). Ways to achieve biological progress (aromorphosis, idioadaptation total degeneration) and its forms.
- 40. Macro- and microevolution. Characteristic of their results. Speciation and its forms.
- 41. The position of Homo sapiens in the animal world. The qualitative uniqueness of the person.
- 42. The ratio biological and social factors in the development of human rights.
- 43. Race and the unity of the human species.
- 44. Ecology as a science.
- 45. Environmental factors. Patterns of action of environmental factors on the body.
- 46. The concept of ecosystem biogeocoenose, antropobiogeotsenoze.
- 47. The principles of interaction of the parasite and the host at an individual level. Parasitism as a biological phenomenon. The origin of parasitism.
- 48. General characteristics of the class Sarcodina. Morphophysiology and the life cycle of dysenteric amoeba. Diagnosis and prevention of amoebiasis.
- 49. Morphophysiological characteristic of the class Zoomastigophora. The life cycle of pathogens, pathogenesis, diagnosis and prevention of trypanosomiasis.
- 50. Morphophysiological characteristic of the class Zoomastigophora. The life cycle of pathogens, pathogenesis, diagnosis and prevention of leishmaniasis.
- 51. Morphophysiological characteristic of the class Zoomastigophora. The life cycle of pathogens, pathogenesis, diagnosis and prevention of trichomoniasis and giardiasis.
- 52. Class Sporozoa. The life cycle of Plasmodium falciparum. Pathogenesis, diagnosis and prevention of malaria.
- 53. Morphophysiology, lifecycle and pathogenic effect of the pathogen of toxoplasmosis.
- 54. General characteristics of the class "Cilliates". The life cycle and pathogenic effect balantidiums. Prevention balantidiaza.
- 55. Class Flukes. Morphological characteristics and breeding trematodes.
- 56. Features of biology and pathogenic action of opisthorchosis, fascioliasis and Paragonimiasis.
- 57. Features of biology and pathogenic action of tropical trematodes.
- 58. Total morphophysiological characteristic of the class Cestoda.
- 59. Class Cestoda. The life cycle of pathogens and pathogenic action, diagnosis and prevention and hymenolepiasis diphilobotriosis.
- 60. Class Cestoda. The life cycle of pathogens and pathogenic action, diagnosis and prevention of echinococcosis and alveococcosis.
- 61. Class Cestoda. The life cycle of pathogens and pathogenic action, diagnosis and prevention teniasis, cysticercosis and teniarinhosis.
- 62. Morphophysiological characterization of the class Nematoda.
- 63. The morphology, development cycle and pathogenic effect ascaris, pinworm, whipworm. Laboratory diagnosis and prevention nematosis.
- 64. Class Nematoda. The life cycle of pathogens pathogenic action, diagnosis and prevention of hookworm, strongyloidiasis, trichinosis.
- 65. Class Nematoda. The life cycle of pathogens pathogenic action, diagnosis and prevention of dracunculiasis, onchocerciasis and wuchereriasis.
- 66. General characteristics of the class Arachnids.
- 67. Troop mites: morphology, life cycle, medical value.
- 68. Morphophysiological characteristics and life cycle of the class Insects.
- 69. Morphology, life cycle and medical importance of insects ectoparasites (lice, fleas, houses and volfartova flies).
- 70. Insects the carriers of infectious and parasitic diseases (gnats, mosquitoes, sandflies, tsetse flies. Midges), morphophysiological characteristics, life cycle and medical importance.

B. The microscopic slides

- 1. Golgi complex.
- 2. Mitochondria in the cells of the intestinal roundworm.
- 3. Inclusion of fat in liver cells amphibian.
- 4. The inclusions of glycogen.

- 5. Pigment inclusion in chromatophores tadpole skin.
- 6. Mitosis in onion of root.
- 7. Polytene chromosomes.
- 8. Blastula frog.
- 9. Frog gastrula.
- 10. Frog neurula (early).
- 11. Frog neurula (average).
- 12. Frog neurula (late).
- 13. Primary chicken embryo strip.
- 14. Somites, notochord, neural tube.
- 15. Trunk and chicken embryo amniotic fold.
- 16. Lancet fluke.
- 17. Cat fluke.
- 18. Lung fluke.
- 19. Roundworm eggs.
- 20. Eggs of liver fluke.
- 21. Eggs of bovine tapeworm.
- 22. Eggs of broad tapeworm.
- 23. Eggs of pinworm eggs.
- 24. Oncosphere.
- 25. The tick Ixodes.
- 26. Gamasid mites.
- 27. Mouthparts of the mosquito.
- 28. Flea dog.
- 29. Head louse.
- 30. Nit.

C. The macro specimens

- 1. Ascaris (male and female).
- 2. Wide tapeworm.
- 3. Liver fluke.
- 4. Echinococcus.
- 5. Ascaris (male and female).
- 6. Wide tapeworm.
- 7. Liver fluke.
- 8. Echinococcus.